Skip to main content
Walter Noordzij
dr.

In my profession as a nuclear medicine physician, I’m involved in both clinical and scientific applications of nuclear medicine and radiology modalities. My main interests include haematology, general oncology, radio-immunotherapy, and especially the implementation of new therapeutic strategies. Currently, I have a special interest in imaging post-transplant lymphoproliferative disease, as well as radio-immunotherapy in chemotherapy refractory (non)-Hodgkin’s lymphoma.

Genomic profiling of post-transplant lymphoproliferative disorders using cell-free DNA
Published in: Journal of Hematology and Oncology
Diagnosing post-transplant lymphoproliferative disorder (PTLD) is challenging and often requires invasive procedures. Analyses of cell-free DNA (cfDNA) isolated from plasma is minimally invasive and highly effective for genomic profiling of tumors. We studied the feasibility of using cfDNA to profile PTLD and explore its potential to serve as a screening tool. We included seventeen patients with monomorphic PTLD after solid organ transplantation in this multi-center observational cohort study. We used low-coverage whole genome sequencing (lcWGS) to detect copy number variations (CNVs) and targeted next-generation sequencing (NGS) to identify...
Effects of proton therapy on regional [18F]FDG uptake in non-tumor brain regions of patients treated for head and neck cancer
Published in: Clinical and Translational Radiation Oncology
Background and purpose: Previous pre-clinical research using [18F]FDG-PET has shown that whole-brain photon-based radiotherapy can affect brain glucose metabolism. This study, aimed to investigate how these findings translate into regional changes in brain [18F]FDG uptake in patients with head and neck cancer treated with intensity-modulated proton therapy (IMPT). Materials and methods: Twenty-three head and neck cancer patients treated with IMPT and available [18F]FDG scans before and at 3 months follow-up were retrospectively evaluated. Regional assessment of the [18F]FDG standardized uptake value (SUV) parameters and radiation dose in the...
A dual-tracer approach using [11C]CH and [18F]FDG in HCC clinical decision making
Published in: EJNMMI Research
BACKGROUND: Early detection of recurrent or progressive HCC remains the strongest prognostic factor for survival. Dual tracer PET/CT imaging with [11C]CH and [18F]FDG can further increase detection rates as both tracers entail different metabolic pathways involved in HCC development. We investigated dual-tracer PET/CT in clinical decision making in patients suspected of recurrent or progressive HCC. All HCC patients who underwent both [11C]CH and [18F]FDG PET/CT in our institute from February 2018 to December 2021 were included. Both tracer PET/CT were within 4 weeks of each other with at...
External validation of 18 F-FDG PET-based radiomic models on identification of residual oesophageal cancer after neoadjuvant chemoradiotherapy
Published in: Nuclear Medicine Communications
OBJECTIVES: Detection of residual oesophageal cancer after neoadjuvant chemoradiotherapy (nCRT) is important to guide treatment decisions regarding standard oesophagectomy or active surveillance. The aim was to validate previously developed 18 F-FDG PET-based radiomic models to detect residual local tumour and to repeat model development (i.e. ‘model extension’) in case of poor generalisability. METHODS: This was a retrospective cohort study in patients collected from a prospective multicentre study in four Dutch institutes. Patients underwent nCRT followed by oesophagectomy between 2013 and 2019. Outcome was tumour regression grade (TRG) 1...
Maria J Valkema, Roelof J Beukinga, Avishek Chatterjee, Henry C Woodruff, David van Klaveren, Walter Noordzij, Roelf Valkema, Roel J Bennink, Mark J Roef, Wendy Schreurs, Michail Doukas, Sjoerd M Lagarde, Bas P L Wijnhoven, Philippe Lambin, John T M Plukker, J Jan B van Lanschot
Optimisation of scan duration and image quality in oncological 89Zr immunoPET imaging using the Biograph Vision PET/CT.
Published in: European Journal of Nuclear Medicine and Molecular Imaging
PURPOSE: Monoclonal antibody (mAb)-based PET (immunoPET) imaging can characterise tumour lesions non-invasively. It may be a valuable tool to determine which patients may benefit from treatment with a specific monoclonal antibody (mAb) and evaluate treatment response. For 89Zr immunoPET imaging, higher sensitivity of state-of-the art PET/CT systems equipped with silicon photomultiplier (SiPM)-based detector elements may be beneficial as the low positron abundance of 89Zr causes a low signal-to-noise level. Moreover, the long physical half-life limits the amount of activity that can be administered to the patients leading to...